0/11/23 Lecture 10: List-decodable learning
Setup: Let Ocac½ be a small constant.
Let 9 have mean MER and covariance EXIA
Norture samples xi,xn~q, adversary
corrupts arbitrary I-d fraction, we are given
the corrupted samples {x,, x,}
(# bad points overwhelms # good points!)
One might expect it to be impossible to do anything here. For example, what if the corrupted dataset looked like
$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$
where the adversary has created I many
clusters, each of which is an equally plansible
exploration for the data?

At least in this case, could still hope to produce a list of estimates $\mu_1,...,\mu_n$ for $m = O(1/\alpha)$ s.t. $\exists j \in [n]$ s.t. $|\mu - \mu_j|$ is small. (note: this generalizes mixture models! i.e. $|\mu| = \frac{1}{\alpha}$)

Amazing fact: this task, "list-decodable mean estimation," is possible in general!

(even w/ a practical adjorithm)

What is a natural baseline to aim for?

If corrupted dataset looks like a mixture of k=O(1) bounded-covariance dist's, each "cluster" has radius ~ VI. If we project down to the span of the means, then each projected cluster has radius ~ VI.

So as long as clusters are VK-separated, can hope to cluster and learn all k centers.

so might hope to produce list of estimates S.t. at least one estimate is $O(T_E)=O(N\alpha)$ close to M.

The Diakonikolas-Kane-Kongsgaard-Li-Tian '20]: For $n = \Omega(\frac{d}{\alpha})$, there is an $O(\frac{nd}{\alpha})$ - time algorithm for list-decodable mean estimation to error O(1/va). (runtime essentially optimal)

Today: "Baby" version of their result that
runs in time $O(Rd/\alpha)$.

Assumption: there is an $\mathcal{N}(\alpha)$ fraction of "good points" GE[n] s.t.

 $\left\| \frac{1}{|G|} \lesssim (x_i - \mu)(x_i - \mu)^T \right\|_{\partial P} \lesssim 1 \quad (*)$

are an i.i.d. drows from q in the dataset.

(Proposition 8.1 from [Charikar - Steinhardt - Valiant 17]).

Obs 1: If we can produce subspace V of dimension O(1/4) s.t. M close to V, i.e. $\|T_{V}^{\perp}\mu\| \leq O(N_{K})$, then the following alg. solves the task: 1) Select $G(1/\alpha)$ points at random from dataset. 2) project these to V and output them Pf: By (6), 161 EG (TIX: -TIN)(TIX:-TIN)T | OP & TIV By taking traces, => | [G| [[] x; -] | | | 2 < dim (V) = O(1/x) so by Markou's, 99% of points in G satisfy | TT, x; -TT, M = O(1/ Ja). Additionally, | | T[u - u| = | | T[] u| ≤ O(1/√α). 50 α

long as the $\Theta(1/2)$ points in Step 1

Contain dre o	f these	is, u	ve are	gave.
There are	0.99 6 =	$\mathcal{V}(\ll \nu)$	Snch	. / S,
50 we succ	eed w.h.	6 .		O

So suffices to find $O(N_{d})$ -dimensional subspace V st. μ is $O(N_{d})$ -close to V.

In fact, weaker good sonffices:

find $O(1/\alpha)$ -dim subspace V s.t. we can estimate $TT_V^{\perp} \mu$ to error $O(1/\alpha)$.

Note: information - theoretically possible: j'nst Solve list-decodable mean estimation, and let V be the span of the output vectors. Idea: apply iterative filtering, take

V to be top-O(1/a) singular subspace of Em,

variant of signatures lemma to argue we can

estimate Top well enough.

Recall notation:

Throughout, assume $W_1,...,W_n \leq \frac{1}{n}$ (we initialize at $W_i = \frac{1}{n}$ and will only ever decrease these weights)

		7< 1/2 corruption	list-decodable
	ariant Neights	E-n-W; < \(\) \(ckan i decrease, guod mass becomes more and more pronounced.
Term	ination Lition	1 5 wllop 1	$ \int_{C} \left(\xi_{w} \right) \lesssim \sqrt{\xi_{w}} $ For $k = \theta(1/4)$ $k + h$ largest eigenvalue
500	(es ;)	T:= (M, X; -MW) u top eigener of Ew squared magnitude of residual projected in top eigendirection	Ti = (Ex) (Xi - Hw) 2 Ex = V = X
for i	if needed nuariant	point ker than average	Normalized version
Spect	utures	score of page bount	

I) If we hit term ination condition, then done

Pf: apply spectral sig lemma to data projected to subspace orthogonal to top-k singular subspace \(\bigcup_w \) of \(\sum_w \). Then

\[\bigcup_{\text{TL}} \mu_w - \bigcup_{\text{TL}} \mu_w \]

\[\bigcup_{\text{TL}} \mu_w \cdot \bigcup_{\text{TL}} \mu_w \]

\[\bigcup_{\text{TL}} \mu_w \cdot \bigc

~ \frac{1}{\sqrt{\tilde{\tiilde{\tilde{\tiide{\tiilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tiilie{\tilde{\tilde{\tilde{\ti

So we have an $O(1/\alpha)$ - dim subspace and $an O(\frac{1}{v_{\alpha}})$ - accurate estimate of $TT^{\perp}\mu$.

2) If condition on {T;} holds, down weighting maintains invariant.

Cf: Recall donnweighting rule: w; Ew; (1- Timax)

Suffices to show

LHS =
$$\frac{\sum_{i=1}^{N} w_{i}}{\sum_{i=1}^{N} w_{i}}$$

= $\frac{1}{\sum_{i=1}^{N} w_{i}}$
 $\frac{1}{\sum_{i=1}^{N} w_{i}}$

(3) If we haven't hit termination condition, Condition on Scores holds.

Pf: W.t.s.

$$\frac{1}{\sum_{i} w_{i}} \sum_{\substack{i \in \mathbb{Z} \\ \text{clean}, i}} w_{i} \tau_{i} \leq \frac{1}{2} \frac{1}{\sum_{\substack{i \in \mathbb{Z} \\ \text{all}_{i}}} w_{i}} \sum_{\substack{i \in \mathbb{Z} \\ \text{all}_{i}}} w_{i} \tau_{i}$$

Note:
$$T_{i} = \left\| \left(\sum_{w}^{(k)} \right)^{-1/2} V_{w}^{T} \left(x_{i} - \mu_{w} \right) \right\|^{2}$$

$$= T_{i} \left(\left(\sum_{w}^{(k)} \right)^{-1/2} V_{w}^{T} \left(x_{i} - \mu_{w} \right) \left(x_{i} - \mu_{w}^{T} V_{w} \left(\sum_{w}^{(k)} \right)^{-1/2} \right) \right)$$

$$= \left(\left(\sum_{w}^{(k)} \right)^{-1} V_{w}^{T} \left(x_{i} - \mu_{w}^{T} \left(x_{i} - \mu_{w}^{T} \right) \left(x_{i} - \mu_{w}^{T} \right)^{T} V_{w} \right) \right)$$

5

RHS of
$$(+)$$
 = $\frac{1}{2}\sum_{w_i}^{\infty} w_i T_i$
 $\frac{1}{2}\sum_{w_i}^{\infty} w_i A_{i} T_i$
 $\frac{1}{2}\left(\sum_{w_i}^{\infty} w_i\right)^{-1}, \quad V_w \sum_{w_i}^{\infty} V_w$
 $\frac{1}{2}\sum_{w_i}^{\infty} V_w V_w$
 $\frac{1}{2}\sum_{w_i}^{\infty} V_w V_w$

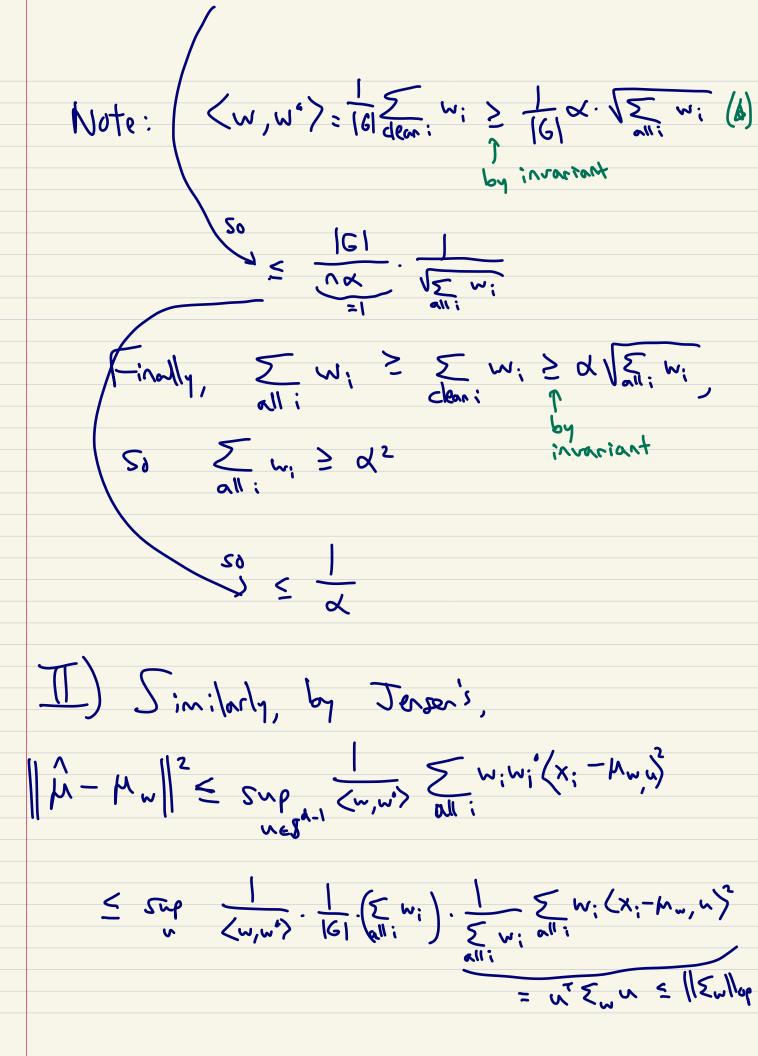
Also define $\sum_{w, \epsilon} \frac{1}{\sum_{w, \epsilon} \sum_{k \in \mathbb{N}} w_i(x_i - h_w)(x_i - h_w)^T}$

We have

$$T_i \leq 2 \| (\Sigma_w^{(k)})^{-1/2} V_w^T (X_i - M_{w,6}) \|^2$$
 $+ 2 \| (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_{w,6} - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_w^T - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_w^T - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_w^T - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_w^T - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_w^T - M_w) \|^2$
 $= 2 | (\Sigma_w^{(k)})^{-1/2} V_w^T (M_w^T - M_w) \|^2$
 $= 2 | (\Sigma_w^T - M_w^T - M_w) \|^2$
 $= 2 | (\Sigma_w^T - M_w) V_w^T (M_w^T - M_w) V_w^T (M_w^T$

$$\frac{2}{2} \sum_{x} w_{i} \delta_{x} = 2 \left\| \left(\sum_{w} w_{i} \right)^{-1/2} T_{i} \left(M_{w} - M_{w_{i}} G_{i} \right) \right\|_{2}^{2}$$

$$\frac{2}{2} \sum_{x} w_{i} \delta_{x} = 2 \left\| \left(\sum_{w} w_{i} \right)^{-1/2} T_{i} \left(M_{w} - M_{w_{i}} G_{i} \right) \right\|_{2}^{2}$$


$$\frac{2}{2} \sum_{w} w_{i} \delta_{x} = 2 \left\| \left(\sum_{w} w_{i} \right)^{-1/2} T_{i} \left(M_{w} - M_{w_{i}} G_{i} \right) \right\|_{2}^{2}$$

$$\frac{2}{2} \sum_{w} w_{i} \delta_{x} = 2 \left\| \left(\sum_{w} w_{i} \right)^{-1/2} T_{i} \left(\sum_{w} w_{i} \right) \left($$

as claimed.

All that remains is (4) Proof of spectral signature lemma, i.e. | MW-M | < Ja | + JEm; | Emllop We'll show Mu and M are both close to $\hat{h} = \frac{1}{(G)} \sum_{w, w'} \sum_{all i} w_i w'_i x_i$, where $w'_i = \frac{1}{(G)} \cdot 1 [i \in G]$. I) || M- M/2 = Sup < M- M, M >2 = 2ND (SM'M, (x'-W) " M) < sup ((x; - 1, 1)2

< \(\lambda_{\mu_0}\)

So So So From prev. page

 $\|\mu - \mu_{v}\|^{2} \leq 2\|\hat{\mu} - \mu_{v}\|^{2} + 2\|\hat{\mu} - \mu_{v}\|^{2}$ $\leq \int_{\mathcal{A}} \left(1 + \sqrt{\sum_{i=1}^{N} u_{i}} \cdot \|\sum_{i=1}^{N} \|\mu_{i}\right)$

as claimed.